On the Complete Width and Edge Clique Cover Problems

نویسندگان

  • Van Bang Le
  • Sheng-Lung Peng
چکیده

A complete graph is the graph in which every two vertices are adjacent. For a graph G = (V,E), the complete width of G is the minimum k such that there exist k independent sets Ni ⊆ V , 1 ≤ i ≤ k, such that the graph G obtained from G by adding some new edges between certain vertices inside the sets Ni, 1 ≤ i ≤ k, is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on 3K2-free bipartite graphs and polynomially solvable on 2K2-free bipartite graphs and on (2K2, C4)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on 3K2-free co-bipartite graphs and polynomially solvable on C4-free co-bipartite graphs and on (2K2, C4)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most 2 vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most 2 vertices. Finally we determine all graphs of small complete width k ≤ 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized Edge Hamiltonicity

We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arb...

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

Independent sets in edge-clique graphs

We show that the edge-clique graphs of cocktail party graphs have unbounded rankwidth. This, and other observations lead us to conjecture that the edge-clique cover problem is NP-complete for cographs. We show that the independent set problem on edge-clique graphs of cographs and of distance-hereditary graphs can be solved in O(n4) time. We show that the independent set problem on edge-clique g...

متن کامل

P6- and triangle-free graphs revisited: structure and bounded clique-width

The MaximumWeight Stable Set (MWS) Problem is one of the fundamental problems on graphs. It is well-known to be NP-complete for triangle-free graphs, and Mosca has shown that it is solvable in polynomial time when restricted to P6and triangle-free graphs. We give a complete structure analysis of (nonbipartite) P6and triangle-free graphs which are prime in the sense of modular decomposition. It ...

متن کامل

Complexity Results on Graphs with Few Cliques

A graph class has few cliques if there is a polynomial bound on the number of maximal cliques contained in any member of the class. This restriction is equivalent to the requirement that any graph in the class has a polynomial sized intersection representation that satisfies the Helly property. On any such class of graphs some problems that are NP-complete on general graphs, such as the maximum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015